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Abstract
We study theoretically ultrasound focusing in periodic multilayered structures,
or superlattices, by solving the wave equation with the Green function
method and calculating the transmitted ultrasound amplitude images of both
the longitudinal and transverse modes. The constituent layers assumed are
elastically isotropic but the periodically stacked structure is anisotropic. Thus
anisotropy of ultrasound propagation is predicted even at low frequencies and
it is enhanced significantly at higher frequencies due to the zone-folding effect
of acoustic dispersion relations. An additional effect studied is the interference
of ultrasound (known as the internal diffraction), which can be recognized
when the propagation distance is comparable to the ultrasound wavelength.
Numerical examples are developed for millimetre-scale Al/polymer multilayers
used recently for imaging experiment with surface acoustic waves.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The ballistic energy transport associated with lattice vibrations is governed by the group
velocity of acoustic phonons and is highly anisotropic in crystalline solids [1–3]. In synthetic
superlattices Brillouin-zone folding due to macroscopic periodicity along the growth direction
considerably modifies the phonon dispersion relations from those in bulk crystals [4–9]. As
a result, phonon group velocities and the resulting acoustic energy transport are expected to
be highly frequency dependent and to exhibit quite different characteristics from those in bulk
solids. Anomalous reductions of lattice thermal conductivity in semiconducting superlattices
observed recently [10–12] are believed to relate to this modification of the phonon group
velocity in multilayered structures [13–15].

Tanaka et al [16] have recently studied anisotropic phonon propagation or phonon focusing
in superlattices with geometrical acoustic approximation (the ray picture for phonons). They
have shown that the existence of zone-centre, zone-edge and internal gaps in the mini
Brillouin zone of a superlattice causes considerable deformation of the constant-frequency
surfaces of phonons, leading to the appearance and disappearance of phonon caustics for
both the longitudinal and transverse modes. Here we note that the phonon focusing effect has
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traditionally been studied by heat-pulse experiments involving high-frequency non-equilibrium
acoustic phonons in the frequency range 100–1000 GHz (the corresponding temperatures are
5–50 K and wavelengths are 1–10 nm) with bulk samples of thickness ∼1–10 mm. Thus, the
sample dimension is much larger than the phonon wavelength and the geometrical acoustic
approximation holds for the ballistically propagating phonons. The thicknesses of conventional
semiconductor superlattices are very small (typically in the range of 1µm) but the geometrical
acoustic approximation is still valid for those high-frequency phonons. However, it would not
be so easy for a heat-pulse experiment to resolve the spatial distribution of the energy flux
propagating inside these superlattices.

Thus, for the experimental study of phonon focusing in superlattices it is desirable to use
a sample of dimensions ∼1–10 mm and this means that the unit period of the superlattice is
also in the millimetre or submillimetre range. In addition, to observe the effects characteristic
of the superlattice, i.e. the zone-folding effects, the bilayer thickness has to compete with the
wavelength of the phonons. For a superlattice with the layer thickness in the millimetre range,
the lowest Bragg frequency is decreased to several MHz, which can be probed by ultrasound
rather than high-frequency phonons [17, 18].

After the publication of [16], an imaging experiment of surface acoustic waves propagating
on Al/polymer multilayers (the surface is parallel to the layer normal) was reported by Vines
et al [19]. In their experiment with immersion transducers the bilayer thickness of the sample
is 1 mm (the thickness of the superlattice sample is 2 cm) and the frequencies generated are
1–10 MHz. Extension of this experiment to a transmission experiment studying bulk ultrasound
focusing in multilayered structures should be straightforward.

Here we note that at a frequency of 1 MHz the corresponding wavelength λ becomes
λ � 3 mm, which is not negligible compared with the sample dimensions. Hence, we expect
that the features characteristic of the wave acoustics will be observed in the ultrasound images
of this frequency range. A bulk focusing experiment at frequencies of several MHz has been
done by Hauser et al [17,18] with an ultrasound beam emitted from a coherently driven point
source. The existence of interference fringes in the image is observed in the high-intensity
regions where the high-frequency phonons are expected to focus strongly due to the folding
of the group-velocity surface. (The interference occurs by the overlapping of acoustic fields
with different wavevectors in a given group-velocity direction.) This self-interference due to
elastic anisotropy is called ‘internal diffraction’ [17, 18]. Our analysis will also elucidate the
finite-wavelength effect, or internal diffraction, on ballistic phonon (ultrasound) propagation
in periodic superlattices.

Another interesting aspect of the experiment by Vines et al [19] is the fact that the
constituent materials of the superlattice, i.e. polycrystalline aluminium and polymer, are
both isotropic elastically. However, the anisotropic phonon or ultrasound propagation should
be observed because of the presence of the anisotropy associated with the one-dimensional
layering structure of the superlattice. This anisotropy will manifest itself in bulk ultrasound
images even at frequencies much smaller than the zone-boundary values. In the analysis
of [16] both constituent materials of the superlattice are highly anisotropic elastically, so it is
hard to recognize (especially at low frequencies) the anisotropy associated with the periodically
stacked structure alone. In the present work we are also able to show, through the study of
the ultrasound images, the effects on the phonon focusing purely caused by the anisotropy
associated with the composite layering structure, which is enhanced at high frequencies by
zone-folding effects.

It should be noted that in the ultrasound imaging experiment (see [17–19]), the
displacement amplitude perpendicular to the sample surface opposite the excitation surface
is usually measured. Thus, the polarization vectors of the ultrasound transmitted through the
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Figure 1. A schematic of a periodic superlattice consisting of alternate A and B layers. The layer
interfaces are parallel to the x–y plane and the growth direction is parallel to the z-axis. The full
curves in the x–y, y–z and z–x sections illustrate the group-velocity curves of the slow transverse
phonons (corresponding to those in figure 4(b) below) and the dashed lines with arrows indicate
caustic directions. The phonon image on the x–y plane is shown schematically.

superlattice play important roles. This implies that an analysis based only on the constant-
frequency and the resulting group-velocity surfaces (that was made in [16]) is not sufficient for
analysing phonon focusing at ultrasound frequencies. We have to solve the inhomogeneous
wave equation in the presence of the external point source and determine the displacement
amplitude of the ultrasound transmitted through the periodic superlattice. For this purpose we
will develope a new formulation based on the Green function method where the lattice Green
tensor is expanded in terms of the complete orthogonal set of eigenfunctions of the perfect,
periodic system with the help of Fourier expansion of the eigenvectors satisfying the Bloch
theorem.

2. Formulation

We consider a perfect superlattice consisting of an infinite repetition of alternating layers of
materials A (with thickness dA, mass density ρA and elastic stiffness tensor cijmn,A) and B
(with thickness dB , mass density ρB and elastic stiffness tensor cijmn,B). The interfaces are
parallel to the x‖ = (x, y) = (x1, x2) plane, with the z-axis (x3-axis) normal to the interfaces
(see figure 1).

The equation governing the motion of lattice displacement u(r, t) of the system under the
external harmonic force f = f(r, t) is given by

ρ(z)üi = ∂j [cijmn(z)∂num] + fi

≡ L̂ij uj + fi (i = 1, 2, 3) (1)

where r = (x‖, z), ρ(z) and cijmn(z) are the position-dependent mass density and elastic
stiffness tensor (which take either ρA and cijmn,A, or ρB and cijmn,B depending on z), and the
summation convention over repeated indices is assumed. Explicitly, the tensor operator L̂ is
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given by
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where C11, C12 and C44 are the elastic constants which also depend on z in the present system.
Next we introduce a new displacement vector w(r, t) defined by

u(r, t) ≡ ρ(z)−1/2w(r, t). (3)

We see that w satisfies

ẅ(r, t) = Ĥw(r, t) + ρ(z)−1/2f(r, t) (4)

where Ĥ ≡ ρ(z)−1/2L̂ρ(z)−1/2 is an Hermitian tensor operator, though L̂ is not Hermitian. To
solve equation (4) we introduce the retarded Green tensorGij (r, r

′; t) = Gij (x‖ −x′
‖, z, z

′; t)
satisfying [

δil
∂2

∂t2
− Ĥil

]
Glj (r, r

′; t − t ′) = δ(r − r′)δ(t − t ′)δij (5)

with Gij (r, r
′; t − t ′) = 0 for t < t ′. Then, the solution w should be given by

wi (r, t) =
∫

dr′
∫

dt ′Gij (x‖ − x′
‖, z, z

′; t − t ′)ρ−1/2(z′)fj (r′, t ′). (6)

To find the expression for the Green tensor Gij we also introduce the Fourier transform Gij of
Gij defined by

Gij (k‖, z, z′;ω) =
∫
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∫ ∞

−∞
dt e−i(k‖·x‖−ωt)Gij (x‖, z, z′; t) (7)

where k = (k‖, kz) = (kx, ky, kz) is the wavevector. This Gij satisfies[
ω2δil + Ĥil(k‖, z)

]Glj (k‖, z, z′;ω) = −δ(z− z′)δij (8)
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with k‖ = |k‖|. Here we consider the eigenvalue equation

Ĥ (k‖, z)Q
(λ)
k‖ (z) = "2

λ(k‖)Q
(λ)
k‖ (z) (10)

where λ = (kz, n) consisting of the Bloch wave number kz and the band index n discriminates
the eigenvalues "λ. The eigenvector Q

(λ)
k‖ (z) satisfies the orthogonality relation∫

dz
[
Q
(λ′)
k‖ (z)

]∗ · Q
(λ)
k‖ (z) = δλ′λ (11)

and the completeness relation∑
λ

Q
(λ)
k‖,i (z)

[
Q
(λ)
k‖,j (z

′)
]∗ = δij δ(z− z′). (12)
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Now we can readily obtain

Gij (k‖, z, z′;ω) =
∑
λ

Q
(λ)
k‖,i (z) [Q(λ)

k‖,j (z
′)]∗

"2
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(13)

where ε is an infinitesimal positive number that ensures the causality. The eigenvector Q
(λ)
k‖ (z)

has to satisfy the Floquet theorem required for a one-dimensional periodic system and takes
the form

Q
(λ)
k‖ (z) = 1√

L

∑
g

exp[i (kz + g) z]e(n)kg (14)

where g = 2πl/D, (l = 0,±1,±2, . . .) is the reciprocal superlattice wave number,
D = dA + dB is the periodicity and L = ND is the system size with N the number of
the periodicity. The vector e

(n)
kg is normalized as∑

g

|e(n)kg |2 = 1. (15)
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with "λ = "kz,n. Here we assume the external harmonic force of the form fi(r, t) =
Fδi,3δ(r) exp(−iω0t), with F a constant. Inserting equation (16) into (6) and using
equation (3), we obtain the lattice displacement as

ui (r, t) = F exp(−iω0t)
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(17)

The integral of equation (17) over wavevector (k‖, kz) can be converted to the integrals over
the frequency " and over the surface of constant frequency defined by "kz,n = ". Thus, we
obtain

ui(r, t) = F exp(−iω0t)
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∗eik‖·x‖ei(kz+g)z (18)

where Pr means the principal part and dSk is the surface element on the constant-frequency
surface in the k space defined by "kz,n = ".

In the ultrasound transmission experiment done by Hauser et al [17, 18] with bulk solid
samples, the immersion transducers are used to excite and receive the ultrasound. Hence, the
acoustic signal measured should be the displacement amplitude corresponding to |uz| at the
far side of the samples.
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Figure 2. Dispersion relations of acoustic waves in the periodic (001) multilayer consisting of
polycrystalline Al and polymer crystal bond layers, the layers being of equal thickness. The
propagation direction (wavevector direction) are (a) θ = 0◦ (normal to the interfaces) and (b)
θ = 30◦ rotated from the growth direction. Horizontal dashed lines indicate the frequencies
"D/v0 = 1.0, 2.1, and 4.0 for which the ultrasound images are calculated.

3. Numerical results

Here we remark that even if the constituent materials of the superlattice are elastically isotropic,
two transverse modes of the acoustic waves are not degenerate for propagation oblique to the
layer interfaces. This is because the superlattice has geometrical anisotropy arising from the
layering structure. However, one of the transverse modes polarized parallel to the interfaces
(the so-called shear mode with horizontal polarization (SH mode)) is decoupled from the other
transverse mode as well as the longitudinal mode polarized in the sagittal plane (the plane
containing the wavevector and perpendicular to the interfaces), which are coupled to each
other. The latter coupled modes, called sagittal modes, are mathematically more complicated
to study than the SH mode but physically more interesting. This is partly because the SH
mode of the ultrasound does not induce lattice displacement perpendicular to the interfaces
and hence is completely isotropic. However, the sagittal modes of the ultrasound are associated
with lattice displacement perpendicular to the layer interfaces and hence exhibit propagation
characteristics strongly dependent on the direction.

We also note that at low frequencies where the phonon wavelength becomes much longer
than the unit periodD of the superlattice, the displacement vectors of those two sagittal modes
are well identified as parallel and perpendicular to the wavevector (precisely, they are quasi-
longitudinal and quasi-transverse) and the slope of the dispersion curve with longitudinal
polarization is steeper than the curve for transverse polarization (see figure 2). At higher
frequencies we can also discriminate the branch of steeper slope from the other one and thus
it should be convenient to label two sagittal modes as longitudinal (L) and transverse (T)
according to their major polarizations, which usually coincide with the slope of the dispersion
curves. This labelling, however, fails at anticrossing regions of the dispersion curves. Thus
we will pay special attention to these regions so that there is no confusion in the identification
of the branches.
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Now we present the numerical results for a multilayer structure consisting of
polycrystalline Al and polymer crystal bond (CB) layers. This means that the constituent
layers are elastically isotropic, which is particularly suitable for seeing the effects of anisotropy
arising from the one-dimensional periodic structure. We assume the same thickness for the
constituent layers, i.e. dA = dB . The parameters assumed are the same as those used in the
surface wave transmission experiments by Vines et al [19]1. For sound velocities in the CB
we assume vR/vt = 0.93 for the ratio of the velocities of the transverse and Rayleigh waves.

3.1. Dispersion relations

Figure 2 shows the dispersion relations "λ (k‖) versus kz of acoustic waves propagating both
normal (θ = 0◦) and oblique (θ = 30◦) to the layer interfaces of the superlattices. The angle
θ denoted is defined by tan θ = |k‖|/kz. The number of reciprocal wave numbers g kept in
the plane-wave expansion equation (10) for the calculation of the dispersion relations is 13
(l = −6 ∼ +6). The relevance of this calculation has been confirmed by the fact that the
dispersion curves do not change at all even if we further increase the number of plane waves
in the expansion of equation (10). Compared with conventional semiconductor superlattices
such as GaAs/AlAs, we see that the width of frequency gaps in this Al/polymer superlattice
is larger because of the larger acoustic mismatch ZAl/ZCB = ρAlv

L
Al/ρCBv

L
CB = 3.71 (the

corresponding ratio in the GaAs/AlAs superlattice is ZGaAs/ZAlAs = 1.19), where vL is the
longitudinal sound velocities of the constituent materials.

For oblique propagation the dispersion relations are more complicated due to the coupling
of the longitudinal and transverse modes polarized in the sagittal plane, i.e. anticrossing of the
dispersion curves occurs (see figure 2(b)). We also note that for oblique propagation θ �= 0◦ the
slope of the dispersion curve does not vanish at the zone boundary but is finite and proportional
to tan θ . This is because for a given propagation angle θ the slope of the dispersion curve shown
in this figure does not represent ∂"/∂kz. Of course, ∂"/∂kz = 0 at the zone boundary.

We choose three typical frequencies "D/v0 = 1.0, 2.1 and 4.0 (v0 = (C44,Al/ρAl)
1/2 =

vTAl = 3.09 × 105 cm s−1 is the transverse sound velocity in aluminium) to see the effects of
Brillouin zone folding on the ultrasound images. The lowest frequency ("D/v0 = 1) is in the
lowest frequency band for both L and T polarizations and the corresponding wavelength is much
longer than the unit period D. The second one ("D/v0 = 2.1) is inside the lowest frequency
gap of the T mode for normal propagation but this frequency is found inside the band of the
T mode for propagation angles larger than 8.0◦ measured from the normal of the interfaces.
The third one ("D/v0 = 4.0) is close to the frequency at which the dispersion curves of the
L and folded T branches intersect at normal propagation. For a certain range of propagation
angles (θ = 30◦, for instance, see figure 2(b)) this third frequency is found inside the intrazone
frequency gap due to the intermode Bragg reflection between the L and T polarizations.

3.2. Slowness and group-velocity surfaces

"D/v0 = 1.0. At this given frequency the wavelengths of both the L and T modes of acoustic
waves are much longer than the unit periodD and hence the ultrasound is essentially the same
as in the bulk crystal with the mass density and elastic constants averaged over the constituent
materials.

1 The longitudinal sound velocities used are vLAl = 6.37 × 105 cm s−1 for aluminium, and vLCB = 4.69 × 105 cm s−1

for polymer (crystal bond), and the transverse sound velocities are vTAl = 3.09 × 105 cm s−1 for aluminium, and
vTCB = 2.43 × 105 cm s−1 for polymer (crystal bond). The mass densities are ρAl = 2.7 g cm−3 for aluminium and
ρCB = 1.35 g cm−3 for polymer (crystal bond).
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Figure 3. The (100) sections of (a) the slowness surfaces and (b) group-velocity surfaces of the
longitudinal (L) and transverse (T) acoustic modes at "D/v0 = 1.0.

Accordingly, the constant-frequency surfaces (slowness surfaces) of two phonon modes in
the wavevector space defined by "λ (k‖) = "0, with "0 a given constant, are entirely located
inside the first Brillouin zone. The sections of the slowness surfaces in the k‖–kz plane and the
corresponding sections of the group-velocity surface in the V‖–Vz plane (in the real space) are
shown in figures 3(a) and (b) respectively. In spite of the fact that each constituent material
exhibits elastic isotropy, the composite layering structure is anisotropic and hence the shapes of
the slowness curves are deformed from circles. Specifically, the slowness curve of the T mode
is approximately flat for a certain range of propagation directions (over 26◦–60◦). Because the
direction of the group velocity is determined by the outward normal of the slowness surface,
this leads to the accumulation of the group-velocity directions around the point A′ shown in
figure 3(b). The ultrasound intensities are thus predicted to be enhanced along these directions.

"D/v0 = 2.1. The sections of the slowness surfaces in the k‖–kz plane and the corresponding
sections of the group-velocity surface in the V‖–Vz plane are shown in figures 4(a) and (b)
respectively. The structures of both slowness and group-velocity curves are a bit more
complicated than those of the previous cases due to the opening of the forbidden gaps at
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Figure 4. The (100) sections of (a) the slowness surfaces and (b) group-velocity surfaces of the
longitudinal (L) and transverse (T) acoustic modes at "D/v0 = 2.1. The point labelled B is
the inflection point with vanishing curvature. The points labelled A–D on the slowness curves
correspond to the points labelled A′–D′ respectively on the group-velocity curves.

the zone boundaries kzD/π = ±1. At this frequency certain portions of the slowness curve
of the T branch (near k‖ = 0, or at the normal propagation) is removed from the first Brillouin
zone (no branch folded back to the first Brillouin zone exists).

Here it should be noted that the slowness curves intersect the boundaries of the first
Brillouin zone at a right angle. So, at the intersecting points (point C, for example) the z
component of the normal vector of the curves vanishes, or ∂"/∂kz = Vz = 0, and no energy
propagation is allowed along the growth direction of the superlattice. This restriction deforms
the slowness curves considerably near the zone boundary and the regions of negative curvature
are produced in addition to the portions of positive curvature. Thus the inflection points (B and
its equivalent points) separate the sections of positive and negative curvatures of the T mode
slowness curves.

The corresponding group-velocity curves of the T mode are located separately in the
regions with positive and negative V‖ components and no energy transport is allowed in the

direction near the Vz-axis. As a consequence T-mode caustics (the direction
−−→
O′B′ and its
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Figure 5. The (100) sections of (a) the slowness surfaces and (b) group-velocity surfaces of the
longitudinal (L) and transverse (T) acoustic modes at"D/v0 = 4.0. The points labelled B, D, E, F
in (a) are the inflection points with vanishing curvatures. The points labelled A–F on the slowness
curves correspond to the points labelled A′–F′ respectively on the group-velocity curves.

equivalent directions in figure 4(b)) appear corresponding to the inflection point B and its
equivalent points of the slowness curves and the T-mode group-velocity curves at this frequency
are multiply connected. In contrast, the group-velocity curve of the L mode has an oval shape
and no notable features are seen.

"D/v0 = 4.0. The k‖–kz sections of the slowness and the corresponding group-velocity
curves are shown in figures 5(a) and (b) respectively. The structures of the slowness curves
are quite different from those in the low-frequency region and, at a glance, it is hard to identify
which curve belongs to either the L or the T mode. A close examination reveals that the
slowness curves existing near the zone boundaries kzD = ±π and k‖ = 0 are those of the T
mode folded back to the first zone. Also those vertical curves closer to the origin O are for
the L mode and the ones located further from the origin are the for the T mode. On these
curves there exist several inflection points, marked B, D, E, F, and their equivalent points not
explicitly indicated.

Compared with those of the previous cases the corresponding group-velocity curves are
much more complicated. The group-velocity curves corresponding to the outermost slowness
curves (of the T mode) shown in figure 5(a) are the small vertical ovals attached to the curves of
another T mode surrounding the origin O′ of this diagram. The group-velocity curves located
outside these T-mode curves are those of the L mode with larger group velocity. All these
group-velocity curves are folded at B′, D′, E′ and F′ originating from the inflection points B,

D, E and F respectively of the slowness curves. The directions of the vectors
−−→
O′B′–

−−→
O′F′ define

the caustics along which the ultrasound intensity diverges in the ray picture.
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Figure 6. The amplitude |uz| and its images in the x–y plane at "D/v0 = 1.0.. (a) L-mode
image. (b) T-mode image. (c) Ultrasound amplitude versus the propagation angle of the L
mode corresponding to (a). (d) Ultrasound amplitude versus propagation angle of the T mode
corresponding to (b). The brightness measures the relative phonon intensity. The direction labelled
A′ corresponds to the point A′ on the group-velocity curve of figure 2(b).

3.3. Ultrasound images

The amplitude |uz| and its images at those three frequencies in the x–y plane (parallel to the
layer interfaces) are shown in figures 6–8. The distance H between the emitter and receiver
of the ultrasound is assumed to be 20 times the unit period, i.e. H/D = 20. These images
span −2 < tan2 < 2 (for figure 8, −6 < tan2 < 6) in both the x and y directions, where 2
is the polar angle measured from the z-axis. Dark and light shadings correspond to small and
large ultrasound amplitudes. It should be noted that in the x–y plane the system is elastically
isotropic and hence the images are completely circular.

"D/v0 = 1.0. The results at this frequency in the x–y plane are shown in figures 6(a) and (b).
We see that the L mode focuses rather gently in the the growth direction tan2 = 0. In contrast,
the T-mode amplitude in this direction is very small because uz of the T mode vanishes in the
growth direction. However, the T-mode amplitude has a peak in the A′ direction (2 = 42.2◦)
corresponding to the direction normal to the flat region of the slowness surface. This enhanced
amplitude is due to so-called ‘precursor’ effects, that is, if the frequency or other parameters
change a bit, the slowness surface will be deformed to give a concave region, which leads
to the folding of the group-velocity surface and the sharp enhancement of the ultrasound
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Figure 7. The amplitude |uz| and its images in the x–y plane at "D/v0 = 2.1. (a) L-mode image.
(b) T-mode image. (c) Ultrasound amplitude versus propagation angle of the L mode corresponding
to (a). (d) Ultrasound amplitude versus propagation angle of the T mode corresponding to (b). The
direction labelled B′ corresponds to the point B′ on the group-velocity curve of figure 3(b).

amplitude. At this frequency, however, the slowness curve does not have a concave region,
so no overlapping group velocities occur in a given propagation direction. An important
consequence of this fact is that the ultrasound amplitude does not show any interference effect
at smaller propagation distances.

"D/v0 = 2.1. The results at this frequency in the x–y plane are shown in figures 7(a) and (b).
Compared with the results for "D/v0 = 1, no qualitative change is observed for the L mode.
In contrast, in the image of the T mode we find fringes which represents the oscillations in the
intensity versus propagation angle measured from the growth direction. These oscillations are
due to the interference called internal diffraction. The origin of this interference is the folding
of the group-velocity surface of the T mode. The overlapping of the group-velocity surfaces
in a given direction causes the interference of the waves. There is no measurable amplitude at
the centre of the image due to the Bragg reflection of the transverse ultrasound propagating in
the direction near the normal of the layer interfaces.

"D/v0 = 4.0. Finally, the results at this frequency in the x–y plane are shown in figures 8(a)
and (b). At this frequency the group-velocity surface of the L mode is also folded and as a
result the fringes in the transmitted ultrasound intensity due to internal diffraction are seen.
Also we see the absence of an L mode transmitted at the centre of the images, which is caused
by the internal gap due to intermode Bragg reflections from the L to the T modes.
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Figure 8. The amplitude |uz| and its images in the x–y plane at"D/v0 = 4.0. (a) L-mode image.
(b) T-mode image. (c) Ultrasound amplitude versus propagation angle of the L mode corresponding
to (a). (d) Ultrasound amplitude versus propagation angle of the T mode corresponding to (b). The
directions labelled B′, D′, E′ and F′ correspond to the points on the group-velocity curves of
figure 4(b).

4. Concluding remarks

Based on a new mathematical formulation in which the lattice Green tensor is expanded in terms
of the complete-orthogonal set of eigenfunctions of the perfect, periodic system satisfying
the Bloch theorem, we have studied theoretically ultrasound focusing in an Al/polymer
superlattice. We also considered the frequency region where the corresponding wavelength is
comparable to the sample dimension and the effect of finite wavelength (the internal diffraction)
becomes important.

In spite of the fact that the constituent layers assumed are elastically isotropic, the
periodically stacked structure is itself anisotropic. Thus the predicted anisotropy in the
ultrasound propagation is purely due to the layering structure of the superlattice and is seen as
the propagation angle is rotated away from the growth axis of the superlattice. This anisotropic
ultrasound propagation is enhanced by the Brillouin-zone folding characteristic of a periodic
system and accordingly it is more conspicuous at frequencies closer to the zone centre, zone
edge and internal gaps in the acoustic dispersion relations. The deformation of the slowness
surfaces (and the resulting deformation of the group-velocity surfaces) results in the appearance
of the caustics along which the acoustic intensity is focused sharply in the geometrical acoustic
approximation.
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For ultrasound propagation the folding of the group-velocity surfaces induces overlapping
of acoustic fields in a given direction and hence causes interference between the amplitudes
of the ultrasound with different wavevectors, leading to the existence of fringes in the images
even for the longitudinal mode.

These new predictions for ultrasound focusing in superlattices should be verified by a
mode-selective transmission experiment [19] with millimetre-thick periodic samples for which
the wavelength of the ultrasound (with 1 MHz frequency range, for example) is comparable
to the sample dimensions.
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